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Melatonin is a hormone that is secreted primarily by the pineal gland 
but is also synthesised in the gastrointestinal tract, the retina and 
in polymorphonuclear leukocytes.[1] It is derived from tryptophan 
metabolism via hydroxytryptophan, serotonin and N-acetyl serotonin 
with secretion from the pineal maximal at night, regulating circadian 
rhythms and sleep initiation.[2,3] Melatonin is also produced in extra 
pineal sites but these do not follow a circadian cycle except for the 
retina, where it functions as an antioxidant.[4] The hormone influences 
mitochondrial metabolism and displays anti-inflammatory and anti-
oxidative effects. In addition, it also increases the expression of other 
antioxidants such as glutathione, and stimulates activation of enzymes 
such as glutathione peroxidase, superoxide dismutase, catalase and 
glutathione reductase.[5-7]

Several inflammatory cells harbour melatonin receptors, including 
T-lymphocytes, natural killer cells, eosinophils and mast cells. In 
these  cells, melatonin inhibits translocation of nuclear factor-kappa B 
(NF-kB) to the nucleus, moderating production of pro-inflammatory 
cytokines.[8,9] Simultaneously, it moderates phospholipase A2, 
lipoxygenase and cyclooxygenase activity influencing production of the 
products of arachidonic acid metabolism,[10] and reduces inflammation 
and the activation of nod-like receptor protein-3 inflammasome induced 
by lipopolysaccharide.[11-13]

There is considerable literature from animal studies describing 
potential neuroprotective effects, such as modulation of excitatory 
responses following trauma or other insults by attenuation of n-methyl-

D-aspartic acid receptor activity.[14] Numerous other effects have been 
demonstrated in vivo such as promotion of axonal regrowth, protection 
of the myelin sheath and nerve maturation.[15,16]

The aforementioned effects suggest that melatonin may play a role in 
the intensive care unit (ICU) to promote sleep, reduce delirium and to 
modulate the inflammatory response in sepsis.

Melatonin, sleep and the ICU
Melatonin is produced in the pineal gland when light fades in the evening, 
creating a surge described as the dim-light melatonin onset phenomenon. 
As the hormone levels rise, there is an associated drop in body temperature 
with an increase in sleep propensity (Fig. 1). Body temperature remains 
low throughout the night commensurate with the high melatonin level but 
as levels drop, the temperature rises, creating a natural wake time.

During the day, the action of light on the retina suppresses production 
of melatonin (sunlight usually provides between 30 000 and 60 000 lux), 
which is a strong stimulus to switch off production.[17] The significant 
decrease in light that occurs in the evening again drives melatonin 
production, promoting the 24-hour circadian rhythm. The presence of 
excess artificial light at night in environments such as the ICU can disrupt 
the nocturnal melatonin secretion.

The drop in body temperature is caused by the action of melatonin on 
the suprachiasmatic nucleus (SCN) in the hypothalamus – the so-called 
central circadian timekeeper. There are also tissue specific peripheral 
clocks in all cells including immune cells such as macrophages, which 
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are controlled by the SCN by influencing the timing of feeding and 
activity as well as regulating the rhythmic release of hormones.[18] 

Ideally, both the central and peripheral clocks should be aligned and 
environmental factors should synchronise these internal clocks with 
the external environment. These clocks may be disconnected in some 
circumstances such as with sepsis[17] and with changes in the external 
environment, such as flight over time zones or the disruptive ICU 
environment, which can temporarily desynchronise internal clocks from 
the external environment. 

Temperature and sleep rhythms do not occur in isolation. Many 
other bodily functions have circadian rhythms, such as the well-known 
dip in blood pressure and decrease in gut motility that occur at night. 
Recognition of the importance of these circadian clocks with regard to 
the best time for delivery of medications has created a field of medicine 
known as chronotherapy, where drugs are given at the correct circadian 
time to effect the best possible response and lowest toxicity.[19] This may 
also have relevance to continuous v. daytime feeding in the ICU.[20] 

There are many disruptors of circadian rhythms and sleep 
(i.e.  continuous light, noise, medications, feeding times and frequent 
patient-care interactions) in the ICU.[18] While light levels are usually 
relatively low (between 30 and 165 lux during the day and 2.4 to 145 
lux at night), it is the lack of a significant change in light intensity 
during the 24-hour period that compromises the circadian rhythm. In 
addition, light devices that are used for procedures in the ICU may emit 
up to 10 000 lux, which in the low light environment of the ICU may 
be enough to alter circadian rhythms.[17] As a consequence, the timing 
of a drop in body temperature may shift, occurring at any time during 
a 24-hour period in an ICU patient.[18] Healthy people subjected to a 
simulated ICU environment had decreased melatonin levels, total sleep 
time, quantity of rapid eye movement (REM) sleep and sleep quality, 
while sleep onset latency increased.[21] Total sleep time in the ICU may 
remain the same but the distribution of sleep may be significantly altered, 
with severe fragmentation occurring throughout the 24-hour period and 
up to 57% of sleep occurring during the day.[17] The differences between 
a disrupted circadian rhythm in an ICU environment and the normal 
rhythm are diagrammatically represented in Figs 2A and B.[22]

Changes in circadian rhythm are particularly problematic in elderly 
patients in the ICU. Elderly patients have reduced sleep time and 

sleep is more fragmented with an increased number of nocturnal 
awakenings. This is associated with loss of slow-wave sleep while REM 
sleep is maintained.[23] Part of the reason for the worse sleep quality in 
the elderly may be due to a lowered melatonin level, which gradually 
declines from childhood to a level below useful by the age of 60 years.[24] 
Thus, circadian rhythms and sleep periods become less adaptable and 
linked more to social cues (time and activity based) than to melatonin. 
In line with this, sleep quality in the elderly outside of the ICU situation 
can be significantly improved by replacement of melatonin without the 
side-effects usually associated with typical hypnotics.[25]

Disturbance in circadian rhythm and melatonin homeostasis have 
been implicated in the development of ICU delirium, which presents 
with waxing and waning levels of consciousness associated with periods 
of inattention and confusion.[26] Delirium occurs in up to 70% of adults  
in ICU and is associated with an increased length of hospital stay, long-
term cognitive impairment and in some cases early death. There are 
many risk factors that contribute to its development, including among 
others advanced age and medical comorbidities, which do not lend 
themselves to modification. However, there are also several modifiable 
risk factors such as the control of pain and sleep, and avoidance of 
sedative agents such as the benzodiazepines.[27] The relationship between 
delirium and circadian sleep cycle disruption is well described and likely 
bidirectional. Thus, increased daytime sleep, fragmentation of sleep 
and poor sleep quality increase the risk of delirium, and the presence 
of delirium in turn negatively impacts attempts to  sleep.[22,28] Sleep 
disruption and delirium are particularly prevalent (80%) in patients 
receiving mechanical ventilation.[29] 

ICU clinicians (97%) believe that poor sleep is a risk factor for 
delirium.[28] Evidence for this is that patients with sleep-disordered 
breathing who have a poor sleep quality have a 6-fold increase in the 
risk of delirium postoperatively.[30] Mechanical ventilation causes 18 - 35 
arousals per hour, which would be equivalent to a diagnosis of moderate 
to severe obstructive sleep apneoa.[28] In addition, certain interventions 
can improve sleep quality and reduce delirium.[28,30,31] 

Several trials have shown the effectiveness of earplugs and eyeshields 
in increasing the contrast between ‘day’ and ‘night’ to protect both 
circadian rhythms and sleep.[21] Specifically timed bright light therapy 
has been used for many circadian disorders but has not been found to be 
effective in the ICU environment.[28] Certain complementary therapies 
such as acupressure, aroma and music therapy also appear to be 
promising but have not been validated for widespread use.[33] A critical 
review of the evidence for non-pharmacological and pharmacological 
interventions comprising 41 studies showed that multiple interventions 
do appear to improve sleep; however, there is a lack of high-quality 
intervention studies.[32]

Exogenous melatonin has been shown to impove sleep quality more 
than earplugs and eyeshields in healthy volunteers in a simulated 
ICU  environment.[21] It also improved sleep quality and daytime 
alertness in patients over the age of 55 years outside of the ICU 
environment with poor sleep quality, with very few side-effects. The 
2018 critical care guidelines, however, reviewed three randomised 
controlled trials (RCTs) and found no support for the use of exogenous 
melatonin.[25,28] Since then, however, more trials have been published 
and the most recent meta-analysis of nine RCTs using exogenous 
melatonin, despite a significant heterogeneity in the studies, found 
a significant decrease in the risk of delirium (risk ratio 0.51; 95% 
confidence interval 0.30 - 0.85; p=0.01)).[34] There was no overall change 
in length of stay in ICU in this meta‑analysis but reduction in delirium is 
in itself a positive outcome given the long-term consequences including 
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Fig. 1. Action of light on the release of melatonin from the pineal gland. 
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prolonged institutionalisation, higher hospital costs, longer duration of 
ventilation, and in some studies higher mortality rate.[26] There have also 
been a few studies of ramelteon as a melatonin agonist on reduction 
of delirium in the ICU. In one small RCT of 88 patients, there was a 
trend toward a decrease in length of ICU stay but there was a significant 
decrease in the incidence and duration of delirium in the group that 
received ramelteon.[35] 

Use of multicomponent strategies appears to be the most useful 
means to improve sleep quality in the ICU and to reduce the risk of 
delirium. The combination of dexmedetomidine, oral melatonin and 
cognitive behavioural therapy to adjust sleep timing and behaviours 
has  been suggested.[22] Adjustment of feeding times, light intensity (to 
create a contrast between day and night), and interactions with patients 
by healthcare workers are all necessary components of any intervention 
to improve sleep quality. This multi-component approach should include 
more deliberate assessments of pain and sedation, and involvement of 
the family where possible, as in the ABCDEF bundle, which has shown 
reduction in delirium, ventilator days and ICU readmissions. Of interest, 
the bundle does not include any specific sleep recommendations other 
than a suggestion to implement sleep hygiene measures under the 
section on prevention of delirium.[36] However, many of the specific 
recommendations that are included, such as pain management and 
a reduction in pharmacological sedation, would also improve sleep quality. 
Currently, there are no studies that use a combination of the ABCDEF 
bundle and melatonin, but this is a fertile area for further investigation. 

The evidence for the importance of circadian rhythms and sleep in the 
ICU patient is well recognised. The impact of poor sleep, particularly in 
elderly patients in the ICU on the risk of delirium, has been accepted by 
the Society of Critical Care Medicine along with necessary interventions 
such as the ABCDEF bundle.[28] However, the evidence for the use of 
melatonin and other environmental strategies to improve sleep quality, 
and in so doing reduce the risk of delirium, is currently insufficient. 
Given the positive signal from emerging RCTs and the meta-analyses 
regarding the benefit of melatonin, and its good safety profile, it should 
be considered as an option to improve sleep quality in the ICU. Further 
research will more clearly define the role and use of melatonin in 
this situation.

Sepsis and melatonin
Depending on the severity of the disease, the host response to sepsis may 
comprise an exaggerated pro-inflammatory response, associated with 
oxidative imbalance and mitochondrial dysfunction. Melatonin has been 
observed to exhibit potent anti-inflammatory, anti-apoptotic, antioxidant 
and antibacterial properties, which render it an attractive candidate as an 
adjuvant therapy in sepsis from an immunomodulatory and a metabolic 
resuscitation perspective.[37,38] Table 1 indicates the  data  obtained from 
animal studies, as there are very few human studies. 

Virally mediated sepsis has also been an area of investigation almost 
entirely in animal studies.[58] Melatonin is not viricidal but the indirect 
actions described in Table 1, i.e. the anti-inflammatory and anti-
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Fig. 2. Normal day and night (A) and changes in light, sleep and hormones in an ICU environment (B). Blue arrows indicate cortisol secretion and brown arrows 
indicate that of melatonin. Adapted from Daou et al.[22]
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oxidative effects and immune enhancement make it a potential but 
unproven therapy for viruses. Pre-treatment of animals with melatonin 
resulted in a marked reduction of acute lung oxidative injury in a model 
of infection with respiratory syncytial virus (RSV), with suppression 
of nitric oxide, hydroxyl radical and malondialdehyde generation.[59] 
It restored glutathione and superoxide dismutase levels in the lung and 
reduced pro-inflammatory cytokines such as tumour necrosis factor-
alpha (TNF-α).[59] In addition, it decreased toll-like receptor-mediated 
downstream gene expression in RSV-infected macrophages, and NF-kB-
dependent gene expression such as those encoding for TNF-α and 
inducible nitric oxide synthase.[60,61] 

Although there are no human studies showing clear benefit, melatonin 
has been pre-emptively included as a potential therapy in some clinical 
protocols for the management of viral infections.[62] Notably, most 
sources recommend doses far higher than those used for sleep, with 
some indicating that benefit would only be achieved with dose ranges 
between 40 mg and as high as 500 mg, which would be extremely 
difficult to achieve and have potential for as yet unrecognised toxicity.[63]  
Formulations of melatonin come in two types: fast- or a prolonged-
release format. Fast-release melatonin reaches a peak within 2 hours 
and decreases just as quickly, while the prolonged-release formulation 
has a slow onset but remains active for up to 6  or 7  hours.[64] The 
pharmacokinetics of the prolonged-release format best represents 
the physiological secretion of melatonin with the peak level half that of 
the fast-release formulation (Fig. 3). All published studies mention the 
dose that was utilised but many do not define which formulation was used 

or the time that it was administered. It is difficult to make comparisons 
of the available literature because doses vary and there is a lack of clarity 
as to the formulation or the timing of administration.

Melatonin’s potential utility in sepsis is appealing; however, it is mainly 
informed by studies in animal models and more studies in humans 
are required. In the context of sepsis, key considerations include the 
demonstration of outcome benefit, determination of optimal dose and 
timing as well as duration and route of administration (oral route has a 
bioavailability of 3 - 33%) and the impact of its use in adults.2

Melatonin’s potential role in the ICU to promote sleep, decrease delirium 
and to modulate the inflammatory response in sepsis remains promising, 
but needs further well-constructed studies to definitive conclusions.
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